Step of Proof: list_extensionality
11,40
postcript
pdf
Inference at
*
I
of proof for Lemma
list
extensionality
:
T
:Type,
a
,
b
:(
T
List). (||
a
|| = ||
b
||)
(
i
:
. (
i
< ||
a
||)
(
a
[
i
] =
b
[
i
]))
(
a
=
b
)
latex
by ((UnivCD)
CollapseTHENA ((Auto_aux (first_nat 1:n) ((first_nat 2:n),(first_nat 3:n
C
)) (first_tok SupInf:t) inil_term)))
latex
C
1
:
C1:
1.
T
: Type
C1:
2.
a
:
T
List
C1:
3.
b
:
T
List
C1:
4. ||
a
|| = ||
b
||
C1:
5.
i
:
. (
i
< ||
a
||)
(
a
[
i
] =
b
[
i
])
C1:
a
=
b
C
.
Definitions
,
t
T
,
P
Q
,
x
:
A
.
B
(
x
)
,
Lemmas
length
wf1
,
select
wf
,
nat
wf
origin